Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук

ОТЯНИЯП

Ученым советом ФИАН

Протокол №<u>3/4</u> от <u>3 .09</u> 20<u>/7</u>г.

Ученый секретарь

УТВЕРЖДАЮ

Директор ФИАН

Колачевский Н.Н.

2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физика конденсированного состояния» (наименование дисциплины)

Направление подготовки:

03.06.01 - Физика и астрономия (указывается код и наименование направления подготовки)

Квалификация: Исследователь. Преподаватель-исследователь.

Форма обучения: очная

1. Цели и задачи дисциплины. Опираясь на полученные ранее знания по специальным курсам в магистратуре, программа дисциплины предполагает углубленное изучение, аспирантами физических явлений в различных конденсированных средах, включая диэлектрики, полупроводники, металлы, гетерогенные твердотельные структуры, плёнки и композитные материалы. Предполагается освоение фундаментальных закономерностей, связанных с динамикой кристаллических решёток, со свойствами электронных и экситонных возбуждений в твёрдых телах, с гальваническими явлениями в металлах и полупроводниках, с магнитными явлениями в твёрдых телах, с эффектом сверхпроводимости, с фазовыми переходами в конденсированных средах и др.

2. Место дисциплины в структуре ООП.

Дисциплина относится к *обязательным* дисциплинам программы аспирантуры.

Дисциплина изучается на 3 курсе.

Требования К «ВХОДНЫМ» знаниям, умениям готовности обучающегося, необходимым при освоении данной дисциплины освоения приобретенным в результате предшествующих дисциплин: программы магистратуры по физике.

Дисциплины, для которых освоение данной дисциплины необходимо как предшествующее: «программы магистратуры по физике».

Актуальность курса обусловлена большой практической значимостью физических явлений в конденсированных средах и необходимостью создания различного рода устройств и приборов, основанных на использовании явлений в твёрдых телах, гетерогенных структурах и кристаллах. В курсе используются представления смежных областей физики.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Формируемые компетенции (код и название компетенции, уровень освоения – при		Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
наличии в карте компе		
УК-1 (способность	ь к	<i>Знать:</i> современные научные достижения в
критическому анализу и	и оценке	предметной области дисциплины; основные
современных	научных	закономерности; основные
достижений, генерир	рованию	экспериментальные и теоретические методы
новых идей при р	решении	изучения дисциплины,

исследовательских и практических задач, в том числе в междисциплинарных областях)

ПК-5 Способность проводить теоретическое экспериментальное исследование природы кристаллических и аморфных, неорганических И органических веществ твердом и жидком состояниях и изменение их физических свойств при различных внешних воздействиях

Уметь: способность к критическому анализу и оценке современных научных достижений в области дисциплины.

Знать: методики анализа современных физикотехнических проблем, способы и методы решения экспериментальных и теоретических задач физики конденсированного состояния

Уметь: критически анализировать современные физико-технические проблемы, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения экспериментальных теоретических задач, интерпретировать, представлять И полученные применять результаты, исходя из тенденций развития физики конденсированного состояния Владеть: приемами технологиями целеполагания, целереализации И результатов деятельности по решению научных задач физики конденсированного состояния

4. Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 4 зачетные единицы.

Распределение трудоёмкости дисциплины по видам работ

		Трудоёмкость		
Вид учебной работы	зач. ед.	час.	в т.ч. по семестрам	
			№ 1	№ 2
Общая трудоёмкость дисциплины по	4	144	72	72
учебному плану				
Аудиторная работа:		72	36	36
лекции (Л)		40	20	20
Практические занятия		32	16	16
Самостоятельная работа:		58	29	29
Вид контроля: Зачет		14	7	7

4.2 Содержание дисциплины

Тематический план учебной дисциплины

Наименование	Содержание раздела		
1. Периодические	1) Трансляционная симметрия. Свойства обратной решетки.		
структуры	2) Теорема Блоха. Зона Бриллюэна. Граничные условия Борна-		
	Кармана, подсчет состояний.		
	3) Краткие сведения о теории групп. Правила отбора для		
	переходов в идеальных периодических системах.		
2. Основные типы	1) Статистика Ферми для электронов. Типы твердых тел.		
твердых тел	2) Картина связей, Металлы, диэлектрики, полупроводники.		
	Типы полупроводников (элементарные п-ки, окислы,		
	слоистые п-ки, органические п-ки и т.д.),		
	полупроводниковые наноструктуры.		
	3) Приближение атомного остова, адиабатическое		
	приближение, приближение среднего поля.		
	4) Край собственного поглощения. Излучение кристалла		
	вблизи края собственного поглощения при высоких		
	температурах.		
	Модель почти свободных электронов. Краткий обзор		
	методов расчета зонной структуры.		
3. Основы	1) Уравнения Максвелла в среде. Диэлектрическая функция.		
макроскопической	2) Соотношения Крамерса-Кронига. Основы оптики металлов.		
электродинамики	3) Примеры использования соотношений Крамерса-Кронига.		
сплошных сред			
4. Микроскопическая	1) Поведение газа электронов под действием нестационарного		
теория	возмущения.		
диэлектрической	2) Обобщенная теорема о сумме сил осцилляторов.		
функции.	3) Плазменные колебания. Экранирование статического поля.		
	4) Переход Мота. Динамическое экранирование.		
5. Колебания решетки	1) Колебательные свойства атомов и электрон-фононное		
	взаимодействие.		
	2) Гармоническое приближение. Дисперсия фононов в		

	<u> </u>
	полупроводниках.
	3) Эффекты, связанные с ангармонизмом.
	4) Решеточное поглощение и отражение. Оптические свойства
	в области остаточных лучей.
	5) Многофононное решеточное поглощение.
	1) Комбинированная плотность состояний, сингулярности Ван
6. Микроскопическое	Хова.
описание поглощения	2) Прямой, непрямой и «дипольно-запрещенный» края
и отражения света	собственного поглащения.
полупроводниками.	3) Электронно-дырочная плазма в полупроводниках и
	полупроводниковых наноструктурах.
	4) Полупроводниковый лазер.
	1) Экситоны Ванье и Френкеля.
	2) Экситонные эффекты вблизи критических точек.
	3) Спектры поглощения и излучения экситонов.
	4) Экситоны в системах с пониженной размерностью.
7. Экситоны	5) Экситонные и эффекты в пределах больших плотностей.
	Переход Мота в системе экситонов. Электронно-дырочная
	плазма и электронно-дырочная жидкость. Бозе конденсат
	экситонов и экситонный диэлектрик. Влияние размерности
	системы.
	1) Квантовый и классический подходы к описанию среды
. 7	сильно взаимодействующей со светом.
8. Поляритонные	2) Фононные поляритоны. Экситонные поляритоны.
эффекты.	3) Поляритоны в микрорезонаторах, «бозеры».
	4) Применимость поляритонного базиса для описания
	неоднородных систем.
	1) Электронные свойства дефектов.
	2) Приближение эффективной массы. Уровни донорных и
	акцепторных центров.
9. Основы физики	3) Простейшие оптические переходы с участием примесей.
дефектов.	4) Связанные экситоны. Эффект «гигантской» силы
	осциллятора.
	5) Локализованные фононы
	1) #
	1) Двух- и четырехточечные схемы измерения проводимости
10. Проводящие	2) Эффект холла. Холловская концентрация. Холловская
свойства твердых тел	подвижность.
17,	3) Модель двухжидкостной системы. Зависимость проводящих
	свойств от размерности системы
11. Квантовые	1) Ферми поверхность. Способ исследования ферми
явления в проводящих	поверхности по квантовым осцилляциям.
свойствах твердых тел	2) Переход-металл-изолятор
1.4	3) Квантовая интерференция и эффект Ааронова-Бома.
12. Применение	1) Частотно-модулированное отражение и термоотражение.
модуляционной	Пьезоотражение.
спектроскопии и	2) Электроотражение (эффект Франца-Келдыша).
спектроскопии	Фотоотражение. Спектроскопия разностного отражения.
рассеяния света для	3) Макроскопическая теория неупругого рассеяния света
исследования твердых	фононами. Рамановский тензор и правила отбора.
тел	4) Диаграммы Фейнмана. Резонансное рассеяние.
	5) Экспериментальное измерение рамановского и

	бриллюэновского рассеяния.		
13.	1) Квантовые ямы, квантовые точки и сверхрешетки.		
Квантоворазмерные	2) Квантование энергетических уровней электронов и дырок.		
эффекты для	Граничные условия Бастарда.		
электронов и фононов	3) Фононы в сверхрешетках. Явления, связанные с		
в полупроводниковых	интерфейсом.		
наноструктурах.			
	1) Феномнология сверхпроводимости		
	2) Теория Гинзбурга-Ландау		
14. Основы теории	4) Критическое магнитное поле 5) Эффект Мейснера, квантование мангнитного потока.		
сверхпроводимости			
	6) Микроскопическая теория сверхпроводимости. БКШ.		
	1) Стационарный и нестационарный эффекты Джозефсона.		
15.	2) Вольтамперная характеристика джозефсоновского перехода		
Сверхпроводниковая	3) Быстрая одноквантовая логика		
электроника	4) Сверхпроводниковые Кубиты		

4.3. Практические занятия (ПР)

Наименование	Содержание раздела
1. Периодические	1) Трансляционная симметрия. Свойства обратной решетки.
структуры	2) Теорема Блоха. Зона Бриллюэна. Граничные условия Борна-
	Кармана, подсчет состояний.
	3) Краткие сведения о теории групп. Правила отбора для
	переходов в идеальных периодических системах.
2. Основные типы	1) Статистика Ферми для электронов. Типы твердых тел.
твердых тел	2) Картина связей, Металлы, диэлектрики, полупроводники.
_	Типы полупроводников (элементарные п-ки, окислы,
	слоистые п-ки, органические п-ки и т.д.),
	полупроводниковые наноструктуры.
	3) Приближение атомного остова, адиабатическое
	приближение, приближение среднего поля.
	4) Край собственного поглощения. Излучение кристалла
	вблизи края собственного поглощения при высоких
	температурах.
	5) Модель почти свободных электронов. Краткий обзор
	методов расчета зонной структуры.
3. Основы	1) Уравнения Максвелла в среде. Диэлектрическая функция.
макроскопической	2) Соотношения Крамерса-Кронига. Основы оптики металлов.
электродинамики	3) Примеры использования соотношений Крамерса-Кронига.
сплошных сред	
4. Микроскопическая	5) Поведение газа электронов под действием нестационарного
теория	возмущения.
диэлектрической	6) Обобщенная теорема о сумме сил осцилляторов.
функции.	7) Плазменные колебания. Экранирование статического поля.
	8) Переход Мота. Динамическое экранирование.
5. Колебания решетки	1) Колебательные свойства атомов и электрон-фононное
	взаимодействие.
	2) Гармоническое приближение. Дисперсия фононов в
	полупроводниках.
	3) Эффекты, связанные с ангармонизмом.

	4) P
	4) Решеточное поглощение и отражение. Оптические свойства
	в области остаточных лучей.
	5) Многофононное решеточное поглощение.
	1) Комбинированная плотность состояний, сингулярности Ван
6. Микроскопическое	Хова.
описание поглощения	2) Прямой, непрямой и «дипольно-запрещенный» края
и отражения света	собственного поглащения.
полупроводниками.	3) Электронно-дырочная плазма в полупроводниках и
	полупроводниковых наноструктурах.
	4) Полупроводниковый лазер.
	1) Экситоны Ванье и Френкеля.
	2) Экситонные эффекты вблизи критических точек.
	3) Спектры поглощения и излучения экситонов.
7.5	4) Экситоны в системах с пониженной размерностью.
7. Экситоны	5) Экситонные и эффекты в пределах больших плотностей.
	Переход Мота в системе экситонов. Электронно-дырочная
	плазма и электронно-дырочная жидкость. Бозе конденсат
	экситонов и экситонный диэлектрик. Влияние размерности
	системы.
	1) Квантовый и классический подходы к описанию среды
0. 17	сильно взаимодействующей со светом.
8. Поляритонные	2) Фононные поляритоны. Экситонные поляритоны.
эффекты.	3) Поляритоны в микрорезонаторах, «бозеры».
	4) Применимость поляритонного базиса для описания
	неоднородных систем.
	1) Электронные свойства дефектов.
	2) Приближение эффективной массы. Уровни донорных и
0.0	акцепторных центров.
9. Основы физики	3) Простейшие оптические переходы с участием примесей.
дефектов.	4) Связанные экситоны. Эффект «гигантской» силы
	осциллятора.
	5) Локализованные фононы
	1) Двух- и четырехточечные схемы измерения проводимости
	2) Эффект холла. Холловская концентрация. Холловская
10. Проводящие	подвижность.
свойства твердых тел	3) Модель двухжидкостной системы. Зависимость проводящих
	свойств от размерности системы
	1) Ферми поверхность. Способ исследования ферми
11. Квантовые	поверхности по квантовым осцилляциям.
явления в проводящих	2) Переход-металл-изолятор
свойствах твердых тел	3) Квантовая интерференция и эффект Ааронова-Бома.
	1) Частотно-модулированное отражение и термоотражение.
12. Применение	Пьезоотражение.
модуляционной	2) Электроотражение (эффект Франца-Келдыша).
спектроскопии и	Фотоотражение (эффект Франца-келдыша). Фотоотражение. Спектроскопия разностного отражения.
спектроскопии	3) Макроскопическая теория неупругого рассеяния света
рассеяния света для	фононами. Рамановский тензор и правила отбора.
исследования твердых	4) Диаграммы Фейнмана. Резонансное рассеяние.
тел	5) Экспериментальное измерение рамановского и
1601	бриллюэновского рассеяния.
13.	1) Квантовые ямы, квантовые точки и сверхрешетки.
1.J.	ту прантовые лиы, квантовые точки и сверхрешетки.

Квантоворазмерные	2) Квантование энергетических уровней электронов и дырок.			
эффекты для	Граничные условия Бастарда.			
электронов и фононов	3) Фононы в сверхрешетках. Явления, связанные с			
в полупроводниковых	интерфейсом.			
наноструктурах.				
	1) Феномнология сверхпроводимости			
	2) Теория Гинзбурга-Ландау			
14. Основы теории 4) Критическое магнитное поле				
сверхпроводимости	5) Эффект Мейснера, квантование мангнитного потока.			
	6) Микроскопическая теория сверхпроводимости. БКШ.			
15.	1) Стационарный и нестационарный эффекты Джозефсона.			
Сверхпроводниковая	2) Вольтамперная характеристика джозефсоновского перехода			
	3) Быстрая одноквантовая логика			
электроника	4) Сверхпроводниковые Кубиты			

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине

Виды самостоятельной работы обучающегося, порядок и сроки ее выполнения:

- 1) подготовка к лекциям с использованием материалов приведенных ниже (п 8.1 и 8.2) источников;
- 2) перечень вопросов для проведения текущего контроля и промежуточной аттестации в соответствии с тематикой дисциплины.

6. Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Перечень компетенций, на освоение которых направлено изучение дисциплины «Физика конденсированного состояния», с указанием этапов их формирования в процессе освоения образовательной программы, представлен в п.3 настоящей рабочей программы. Карты компетенций приведены в ООП.

6.2.1. Показатели и критерии оценивания компетенций, используемые шкалы оценивания

Элементы компетенций (знания, умения, владения)	Показатели оценивания	Критерии оценивания	Средства оценивания	Шкалы оценив ания
Знать (УК-1)	Знание: современные научные достижения в предметной области	Правильность и полнота ответов, глубина понимания вопроса	Текущий контроль: Устное собеседование; выполнение практического задания, выполнение домашнего	Шкала 1

				1
	дисциплины;		задания	
	основные		Промежуточная	
	закономерности;		аттестация:	
	основные		зачет	
	экспериментальные			
	и теоретические			
	методы изучения			
	дисциплины,			
Уметь	Умение	Правильность	Текущий контроль:	Шкала
(YK-1)	анализировать	выполнения	Устное собеседование;	2
	альтернативные	учебных	выполнение	
	варианты решения	заданий,	практического задания,	
	исследовательских и	аргументиро-	выполнение домашнего	
	практических задач и	ванность	задания	
	оценивать	выводов		
	потенциальные		Промежуточная	
	выигрыши/проигрыш		аттестация:	
	и реализации этих		зачет	
	вариантов			
Знать	Знание методики анализа	Правильность	Текущий контроль:	Шкала
(IIK-5)	современных физико-	и полнота от-	Устное собеседование;	1
	технических проблем,	ветов, глубина	выполнение	
	способы и методы	понимания	практического задания,	
	решения экспериментальных и	вопроса	выполнение домашнего	
	теоретических задач	-	задания	
	физики			
	конденсированного		Промежуточная	
	состояния.		аттестация:	
			зачет	
Уметь	Умение	Правильность	Текущий контроль:	Шкала
(ПК-5)	критически анализировать	выполнения	Устное собеседование;	2
	современные физико-	учебных	выполнение	
	технические проблемы, ставить задачи и	заданий,	практического задания,	
	разрабатывать программу	аргументиро-	выполнение домашнего	
	исследования, выбирать	ванность	задания	
	адекватные способы и	выводов		
	методы решения		Промежуточная	
	экспериментальных и		аттестация:	
	теоретических задач, интерпретировать,		зачет	
	представлять и применять			
	полученные результаты,			
	исходя из тенденций			
	развития физики			
	конденсированного состояния.			
	состолнил.			

6.2.2. Описание шкал оценивания степени сформированности элементов компетенций

Шкала 1. Оценка сформированности отдельных элементов компетенций

Обозначения		Формулировка требований			
Huda	Orronno	к степени сформированности компетенции			
Цифр.	Оценка	Знать	Уметь	Владеть	
1	Неудовлетвори	Отсутствие знаний	Отсутствие умений	Отсутствие навыков	
	тельно				
2	Неудовлетвори	Фрагментарные	Частично освоенное	Фрагментарное	
	тельно	знания	умение	применение	
3	Удовлетвори	Общие, но не	В целом успешное,	В целом успешное,	
	тельно	структурированные	но не	но не	
		знания	систематически	систематическое	
			осуществляемое	применение	
			умение		
4	Хорошо	Сформированные, но	В целом успешное,	В целом успешное,	
		содержащие	но содержащие	но содержащее	
		отдельные пробелы	отдельные пробелы	отдельные пробелы	
		знания	умение	применение навыков	
5	Отлично	Сформированные	Сформированное	Успешное и	
		систематические	умение	систематическое	
		знания		применение навыков	

Шкала 2. Комплексная оценка сформированности знаний, умений и владений

	Обозначения	Формулировка требований
Цифр.	Оценка	к степени сформированности компетенции
1	Неудовлетворительно	Не имеет необходимых представлений о проверяемом материале
2	Удовлетворительно или неудовлетворительно (по усмотрению преподавателя)	Знать на уровне ориентирования, представлений. Субъект учения знает основные признаки или термины изучаемого элемента содержания, их отнесенность к определенной науке, отрасли или объектам, узнает их в текстах, изображениях или схемах и знает, к каким источникам нужно обращаться для более детального его усвоения
3	Удовлетворительно	Знать и уметь на репродуктивном уровне. Субъект учения знает изученный элемент содержания репродуктивно: произвольно воспроизводит свои знания устно, письменно или в демонстрируемых действиях
4	Хорошо	Знать, уметь, владеть на аналитическом уровне. Зная на репродуктивном уровне, указывать на особенности и взаимосвязи изученных объектов, на их достоинства, ограничения, историю и перспективы развития и особенности для разных объектов усвоения
5	Отлично	Знать, уметь, владеть на системном уровне. Субъект учения знает изученный элемент содержания системно, произвольно и доказательно воспроизводит свои знания устно, письменно или в демонстрируемых действиях, учитывая и указывая связи и зависимости между этим элементом и другими элементами содержания учебной дисциплины, его значимость в содержании учебной дисциплины

Итоговая оценка по дисциплине – зачет.

Шкала оценивания					
Не удовлетворительно	удовлетворительно	хорошо	отлично		
«Не зачтено»	«Зачтено»				

6.3. Типовые контрольные задания или иные материалы, необходимые ДЛЯ оценки знаний, умений, навыков (или) опыта характеризующих этапы формирования деятельности, компетенций процессе освоения образовательной программы.

Типовые вопросы и задания для текущего контроля (оценка сформированности элементов (знаний, умений) компетенций УК-1, ПК-5 в рамках текущего контроля по дисциплине) по разделам дисциплины:

Примеры вопросов для самостоятельной работы:

- 1. Трансляционная симметрия. Свойства обратной решетки.
- 2. Теорема Блоха. Зона Бриллюэна.
- 3. Правила отбора для переходов в идеальных периодических системах.
- 4. Статистика Ферми для электронов. Типы твердых тел.
- 5. Приближение атомного остова, адиабатическое приближение, приближение среднего поля. Модель почти свободных электронов. Краткий обзор методов расчета зонной структуры.
- 6. Край собственного поглощения. Излучение кристалла вблизи края собственного поглощения при высоких температурах.
- 7. Уравнения Максвелла в среде. Диэлектрическая функция.
- 8. Соотношения Крамерса-Кронига.
- 9. Плазменные колебания в системах различной размерности. Поверхностный плазмаон-поляритон. Локализованный плазмон.
- 10. Гармоническое приближение. Дисперсия фононов в полупроводниках.
- 11. Решеточное поглощение и отражение. Оптические свойства твердых тел в области остаточных лучей.
- 12. Комбинированная плотность состояний, сингулярности Ван Хова.
- 13. Прямой, непрямой и «дипольно-запрещенный» края собственного поглащения.

- 14. Электронно-дырочная плазма в полупроводниках и полупроводниковых наноструктурах. Полупроводниковый лазер.
- 15. Экситоны Ванье и Френкеля.
- 16. Экситонные эффекты вблизи критических точек. Спектры поглощения и излучения экситонов.
- 17. Квантовый и классический подходы к описанию среды сильно взаимодействующей со светом. Фононные поляритоны. Экситонные поляритоны.
- 18. Приближение эффективной массы. Уровни донорных и акцепторных центров в полупроводниках.
- 19. Эффект Холла. Холловская концентрация. Холловская подвижность.
- 20. Ферми поверхность. Способ исследования ферми поверхности по квантовым осцилляциям.
- 21. Переход-металл-изолятор в системах различной размерности
- 22. Эффект Ааронова-Бома.
- 23. Макроскопическая теория неупругого рассеяния света фононами. Рамановский тензор и правила отбора.
- 24. Электроотражение (эффект Франца-Келдыша). Спектроскопия разностного отражения.
- 25. Полупроводниковые квантовые ямы, квантовые точки и сверхрешетки.
- 26. Квантование энергетических уровней электронов и дырок. Граничные условия Бастарда.
- 27. Фононы в сверхрешетках. Явления, связанные с интерфейсом.
- 28. Феномнология сверхпроводимости. Теория Гинзбурга-Ландау
- 29. Критическое магнитное поле в сверхпроводниках
- 30. Эффект Мейснера, квантование мангнитного потока.
- 31. Микроскопическая теория сверхпроводимости. БКШ.
- 32. Стационарный и нестационарный эффекты Джозефсона.

33. Быстрая одноквантовая логика. Сверхпроводниковые Кубиты

6.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Процедуры и средства оценивания элементов компетенций по дисциплине

Процедура	Средство оценивания					
проведения	Текущий контроль			Промежуточный		
		контроль				
	Выполнение	Выполнение	Выполнение	Зачет		
	устных заданий	письменных	домашних			
		заданий	заданий			
Продолжитель	По усмотрению	По усмотрению	По усмотрению	В соответствии с		
ность контроля	преподавателя	преподавателя	преподавателя	принятыми		
				нормами		
				времени		
Форма	Устный опрос	Письменный	Письменный	В письменной		
проведения		опрос	опрос	форме		
контроля						
Вид	Устные вопросы	Письменные	Письменные	Письменное		
проверочного		задания	задания	задание		
задания						
Форма отчета	Устные ответы	Ответы в	Ответы в	Ответы в		
		письменной	письменной	письменной		
		форме	форме	форме		
Раздаточный	Лекционный	Лекционный	Лекционный	Лекционный		
материал	материал	материал	материал	материал		
		Справочная	Справочная	Справочная		
		литература	литература	литература		

7. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Физика конденсированного состояния» предусматривает лекции, практические занятия и самостоятельные занятия. Успешное изучение дисциплины требует посещения лекций, работы на практических занятиях и самостоятельной работы, выполнения учебных заданий преподавателя, ознакомления с основной и дополнительной литературой.

В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации на практическое занятие и указания на самостоятельную работу.

При подготовке к лекционным занятиям аспирантам необходимо:

перед очередной лекцией необходимо просмотреть конспект материала предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам.

Виды самостоятельной работы: в домашних условиях, в читальном зале библиотеки, на компьютерах с доступом к базам данных и ресурсам Интернет, в лабораториях с доступом к лабораторному оборудованию и приборам.

Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим учебники, учебнометодические пособия, конспекты лекций, учебное и научное программное обеспечение, ресурсы Интернет.

Практические занятия завершают изучение наиболее важных тем учебной дисциплины. Они служат для закрепления изученного материала, развития умений и навыков подготовки докладов, сообщений, приобретения опыта устных публичных выступлений, ведения дискуссии, аргументации и защиты выдвигаемых положений, а также для контроля преподавателем степени подготовленности аспирантов по изучаемой дисциплине.

При подготовке к практическому занятию аспиранты имеют возможность воспользоваться консультациями преподавателя.

При подготовке к практическим занятиям аспирантам необходимо:

- до очередного практического занятия по рекомендованным литературным источникам проработать теоретический материал, соответствующей темы занятия;
- в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, заданных для самостоятельного решения;
- в ходе семинара давать конкретные, четкие ответы по существу вопросов;

на занятии доводить каждую задачу до окончательного решения.

8. Ресурсное обеспечение:

8.1. ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Питер Ю, Мануэль Кардона. Основы физики полупроводников. Под редакцией Б.П. Захарчени. Москва, Физматлит (2002)
- 2. Гантмахер В. Ф. Электроны в неупорядоченных средах. М.: ФИЗМАТЛИТ, 2013. 288 с
- 3. Джон Займан. Принципы теории твердого тела. Москва, Мир (1974)
- 4. Давыдов. А.С. Теория твердого тела. Москва, Наука (1976)
- 5. Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010)
- 6. В.М. Агранович, Ю.Н. Гартштейн. Пространственная дисперсия и отрицательное преломление света. 176, 1051 (2006)
- 7. Экситоны. Под редакцией Э.И. Рашба, М.Д. Стердж. Москва, Наука (1985)

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

1. Ашкрофт Н., Мермин Н. Физика твердого тела (в двух томах) т.1. М.: Мир, 1979. — 458 с., т.2. М.: Мир, 1979. — 486 с.

- 2. Абрикосов А.А. Основы теории металлов: Учеб. руководство. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 520 с.
- 3. Зеегер К. Физика полупроводников М.: Мир, 1977. 615 с.
- 4. Мотт Н. Электронные процессы в некристаллических веществах. М.Мир, 1982, т. 1, 368 с.
- 5. Херман М. Полупроводниковые сверхрешетки, пер. с англ., М. Мир, 1989 г.
- 6. Харрисон У. Теория твердого тела. М. Мир, 1972. 616 с.
- 7. Харрис П. Углеродные нанотрубки и родственные структуры М. Техносфера, 2003. 336 с.
- 8. Л.М. Бреховских. Волны в слоистых средах. Изд. АН СССР, 1957 г.
- 9. Д. Займан. Электроны и фононы. ИЛ. 1962 г.
- 10. Ч. Китель. Квантовая теория твёрдых тел. «Наука», 1967 г.
- 11. Д. Блейкмор. Физика твёрдого тела..Изд. «Мир», Москва, 1985 г.
- 12. "Квантовая электроника". Маленькая энциклопедия, М., 1969 г.
- 13. Г.М. Страховский, А.В.Успенский "Основы квантовой электроники", Изд-во Высшей школы, М., 1973 г.
- 14. Киттель Ч. Введение в физику твердого тела. М., Наука, 1978.
- 15. Ашкрофт Н., Мермин Н. Физика твердого тела, тт. I и II. М., Мир, 1979.
- 16. Уэрт Ч., Томсон Р. Физика твердого тела. М., Мир, 1969.
- 17. Займан Дж. Принципы теории твердого тела. М: Мир, 1974.
- 18. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: Высшая школа, 2000.
- 19. Вонсовский С.В. Магнетизм. М., Наука, 1971.
- 20. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М:, Наука, 1979 г.
- 21. В.В.Шмидт «Введение в физику сверхпроводимости». МЦ НМО, Москва, 2000.
- 22. Кулик И. О., Янсон И. К. Эффект Джозефсона в сверхпроводящих туннельных структурах, Москва Физматлит, 1970 г.
- 23. Е. Н. Бормонтов. Квантовый эффект Холла. СОЖ 9, 81,1999 г.
- 24. А. Ярив, П. Юх. Оптические волны в кристаллах. М. «Мир», 1987 г.
- 25. Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. Т. 1,2. М.: Мир, 1981.
- 26. С.А. Родионов Основы оптики (2000).
- 27. M.Csele. Fundamental of Light Sources and Lasers (2004)
- 28. D.Greene Light and Dark (2003)
- 29. Воробьев и др. Оптические свойства наноструктур (2001)
- 30. Mark Fox Optical Properties of Solid (2001)
- 31. Н.Б. Делоне Взаимодействие лазерного излучения с веществом (1989)
- 32. Колмаков Ю. Н., Кажарская С.Е. Учебное пособие по курсу "Оптика" (2000)
- 33. D. A. Burns, E. W. Ciurczak Handbook of Near-Infrared Analysis (2001)
- 34. Robert W. Boyd Nonlinear Optics 2nd ed (2003)
- 35. D. Courjon. Near-Field Microscopy and Near-Field Optics (2001)

8.2. Ресурсы информационно-телекоммуникационной сети Интернет, необходимые для освоения дисциплины

- 1. <u>www.sciencedirect.com</u> ведущая информационная платформа издательства Elsevier для ученых, преподавателей, аспирантов, студентов, специалистов;
- 2. www.elibrary.ru проект Научная электронная библиотека.
- 3. http://scholar.google.com поиск с использованием Google Scholar.
- 4. SCOPUS (www.scopus.com)

- 4. https://webofknowledge.com Web of Science на платформе Web of Knowledge.
- 5. Доступ к полным текстам патентов:

 http://ep.espacenet.com Европейское патентное ведомство;

 http://www.uspto.gov/main/sitesearch.htm Американское патентное ведомство;
 - www.fips.ru Российская библиографическая патентная база данных.
- 6. Полный список ресурсов приведен в ООП.
- **8.3. Информационные технологии**, используемые при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
 - Программные средства Microsoft Office.

9. Материально-техническое обеспечение дисциплины.

- 1) Учебная аудитория, оснащенная мультимедийным презентационным оборудованием;
- 2) Библиотека с читальным залом, книжный фонд которой составляет специализированная методическая и учебная литература, журналы.

10. Образовательные технологии.

Обучение по дисциплине ведется с применением как традиционных методов, так и с использованием инновационных подходов: активное участие аспирантов в научных семинарах, представление докладов на научные конференции, подготовка научных статей, подготовка презентаций по литературе и по теме диссертации, освоение новых средств автоматизации и компьютеризации выполняемых научных исследований.

Разработчик:

к.ф.-м.н.

Кривобок В. С.